
CPS122 Lecture: Cohesion and Coupling

Last revised March 31, 2019
Objectives:

1. To introduce cohesion and coupling as criteria for evaluating designs

 Materials:

1. Cohesion/coupling worksheet + projectable of my answers

I. Introduction

A.As you are doing design, it is important to have criteria in mind for
evaluating the quality of the design.

B. Today, we look at two such criteria: cohesion and coupling.

1. In a good design, the various component parts (e.g. the classes)
have high cohesion.

2. In a good design, the various component parts (e.g. the classes)
have low coupling

II. Cohesion

A.We say that an entity is cohesive if it performs a single, well-defined
task, and everything about it is essential to the performance of that
task.  
 
(Note that we have defined cohesion in terms of an entity. The
cohesion test can be applied to classes (as is our primary focus here);
but it can also be applied on a lower level to the individual methods of
a class (each of which should be cohesive) or, on a higher level, to a
package of related classes or an overall system or subsystem.)

�1

1. An important goal in design is to try to ensure that each entity we
design (class, method, system) exhibits the highest possible level of
cohesion.

2. A good test for cohesion is “can I describe the purpose of this entity
(class, method, etc.) in a short statement without using words like
‘and’?” (This is one of the benefits of writing a prologue comment
for a class or method before you write the code - it helps you to
think about whether what you are about to produce is truly
cohesive.)

B. Over the years, software engineers have identified various sorts of
possible cohesion, which can be ranked from most cohesive (good) to
least cohesive (bad).  
 
Unfortunately, different writers list different of types of cohesion, and
use different names. Of course, the ultimate task is not to determine
what kind of cohesion a given entity exhibits, but rather to produce the
most cohesive entity possible.  
 
Here is one approach:

1. Desirable sorts of cohesion

a) Functional cohesion - the entity performs a single, well-defined
task, without side effects. [A well-designed method will exhibit
this.]

b) Informational cohesion - the entity represents a cohesive body
of data and a set of independent operations on that body of data.
[A well-designed class will exhibit this.]

2. Less desirable sorts of cohesion - listed in decreasing order of
desirability

�2

a) Communicational, Sequential, Procedural cohesion - the entity
is responsible for a series of tasks which must be performed in
some order. (With fine distinctions between communicational,
sequential, and procedural that we will omit here)

b) Temporal cohesion - the entity is responsible for a set of tasks
which must be performed at the same general time (e.g.
initialization or cleanup)

c) Logical - the entity is responsible for a set of related tasks, one
of which is selected by the caller in each case.  
 

In a case like this, it may be better to have several kinds of
entity - perhaps using polymorphism.

d) Utility cohesion - the entity is responsible for a set of related
tasks which have no stronger form of cohesion.  
 

Example: the java.util package and the java.Math class - the fact
that a level of cohesion is less desirable does not mean it can
always be avoided!

3. Undesirable: coincidental cohesion - the entity is responsible for a
set of tasks which have no good reason (other than, perhaps,
convenience) for being together.

C. For any entity that has less than the highest possible cohesion, it is
worthwhile considering whether its cohesion can be improved.

1. Sometimes, this is a simple rethinking of its purpose statement. If
the purpose contains “ands”, it may be possible to construct a
statement that implicitly includes all the items and nothing else.  
 
Example: Consider the method in the UML labs that enrolls a
student in a course (doEnroll()). Its purpose statement might
read: “Add student to course and add course to student”. A simple
rephrasing might be “Enroll student in course” that implicitly
includes both of these, and improves cohesion.

�3

2. Often, though, when an entity has low cohesion, it may be possible
to refactor the design to produce higher cohesion by splitting the
low cohesion entity into two or more entities with higher cohesion.

a) For example, some entity may be responsible for two different
kinds of tasks, but can be refactored into two associated entities,
each of which is responsible for one of the kinds of tasks.

b) One place where this often occurs arises when you have a class
that represents some entity that can be displayed and perhaps
edited in a GUI. In this case, it may make sense to refactor the
design into a class that has the responsibilities associated with
representation and another related class that has the GUI
responsibilities.  
 
Example: One might create a Patron class in the library project
that is responsible for representing a patron (including keeping
track of the patron's checkouts, fines, and reservations) and also
for GUI display/editing of the patron. It is probably better to
create two classes:  
 
 
 
 
 
 
 
 
 
 

 
(Something like this may be worthwhile in iteration 2, for
adding a new patron and likewise for Item.)

D.Give out worksheet; allow class to do Cohesion portion in groups, then
discuss.  

�4

Patron Patron
Editor

1 *

Checkout Fine Reservation

1
1

1

* * *

 
My answers: (PROJECT)

1. D - the only thing these operations have in common is the fact that
they’re done at the same time.

2. A - this is a good example of a module that performs a single,
clearly-defined task

3. C - the cohesion arises from the need to perform steps in a certain
order.

4. B - this is a good example of a cohesive class

5. G - the lack of cohesion here is about as bad as it can get!

6. F - Probably it would be better to have separate drawCircle()
etc. methods - which would also make it easier to extend the
functionality - or to create a class Shape with method draw() and
subclasses for different shapes that define draw() appropriately,

III.Coupling

A.Coupling is a measure of the extent to which an entity depends on
other entities. We will discuss coupling in terms of classes today, but
(as with cohesion) coupling can also be considered at other levels.

B. A system has low coupling just when the various component parts
have minimal dependency on each other. Of course, some coupling is
essential - else you have a society of hermits. But what we want is to
eliminate unnecessary coupling. This makes modification/
maintenance of the system much easier.

C. Recall that a class A depends on another class B if A:

1. A has an association with that B (with navigability toward B if
unidirectional)..

2. Generalizes or realizes B

�5

3. Has a usage dependency on B - through methods that

a) Have local variables of type B

b) Have parameters of type B

c) Have a return value of type B.

4. Dependencies have two important consequences:

a) If a class A depends on a class B, and we want to build a system
that reuses class A, then we must also include class B in the
system, whether or not it would otherwise be needed.

b) If a class A depends on a class B, and class B is modified, class
A may need to change as well.

5. While dependencies are unavoidable (and indeed often necessary),
what we want to do is to minimize the likelihood of cascading
modification occurring, which depends on the strength of the
coupling between two classes.

D.While it is classes that are coupled to one another, it is typically in the
methods of the dependent class that one can take measures to reduce
(or even sometimes eliminate) the coupling, as we shall see below.

E. As was the case with cohesion, software engineers have developed
some categories of coupling. Here is one approach (ranked from most
lowest - therefore most desirable - to highest)

1. Data coupling occurs when a method of class A has parameters (or local
variables or a return value) of class B and uses the class B object as a
single, atomic piece of data. This usually can’t be improved.

�6

2. Stamp coupling occurs when a method of class A has parameters
(or local variables or a return value) of class B and depends on the
structure of the B object (i.e. uses part of it).

a) Example:  
 

Suppose we have a class Person with a method called
getBirthDate(). Suppose we now want to create another class
DriversLicense with a method called isJuniorOperator() (which
returns true if an individual is under 18). One way to structure this
would be as follows: 
 

boolean isJuniorOperator(Person p) {  
 Date birthDate = p.getBirthDate();  
 // return true if birthDate is less than 18 years  
 // before today’s date  
}  
 

However, if we changed the getBirthDate() method of Person in
some way (e.g. renamed it or changed the way we stored information
about the driver), we might also have to change the
isJuniorOperator() method of DriversLicense.

b) Often, stamp coupling can be reduced by rethinking the parameters of
a method. For example, in this case we could design the method to
just take the person’s birthdate (all it needs), rather than the whole
person as a parameter.  
 

boolean isJuniorOperator(Date birthDate) {  
 // return true if birthDate is less than 18 years  
 // before today’s date  
}  
 

Now we rely on the caller to extract the necessary birth date
information from the Person object, reducing the coupling between
DriversLicense and Person, since we no longer need know that a
Person explicitly stores a birth date or provides a getBirthDate()
method to get it. The effect of this is actually to eliminate the coupling
between DriversLicense and Person in this case.

�7

3. Control coupling arises when a method does different things
depending on the value of a “flag” parameter.

a) Example: in your library project, you might eventually create a
method like this. (Not encouraged!)  
 

updatePatron(int whatKind, Patron patron) 
 

where whatKind takes on the values ADD, EDIT or DELETE,
and patron is used for EDIT, but is not used at all for ADD, and
only the phone number is used for DELETE.

b) Often, control coupling can be reduced by replacing the method
with multiple methods - e.g. (in the example):  
 

addPatron() ...  
editPatron(Patron patron) ...  
deletePatron(String phoneNumber) ...  
 

(In this particular example, this also has the effect of producing
cohesion, and eliminates stamp coupling in one case)

4. Common coupling arises when a method depends on a global
variable or constant. This is less common in OO systems, but can
still occur.  
 
Example: In the library problem, one would need to know the fine
rate per day overdue. One might address this by including a
constant FINE_RATE in the class Fine. Now suppose that the value
of this constant is changed. Obviously, the class Fine would need
to be recompiled. But the class ReurnUseCase would also need to
be recompiled if it uses this constant in calculating the fine amount.  
 
This could be avoided if the class Fine contains a method that does
the actual calculation based on the value of this constant, which
ReurnUseCase simply calls. Now Fine is the only class that needs
to be recompiled if the constant is changed. (Even better might be

�8

to make this a variable that can be set by management so nothing
needs to be recompiled to change it!)

5. Content coupling occurs when a module surreptitiously depends on
the inner workings of another module.  
 
(It turns out its almost impossible to illustrate something this bad
using java!)

F. Allow class time to do coupling portion of worksheet in groups, then
discuss.  
 
My answers: (PROJECT)

1. D (The java equivalent of the global variable found in some
programming languages is a static variable of some class)

2. B (because we pass in the whole person object, not just the one
piece of information we need - hence the calculateAge method
needs to know about the interface of Person - e.g. that it has a
method to access the individual’s birth date (getBirthDate() or the
like. This coupling would not occur if the parameter to the method
were the birth date - then it could be applied to any birth date, not
just the birth date contained in a Person object.)

3. E (It’s not actually possible to construct something this bad in
Java!)

4. A - there is only one parameter, and it’s a simple data item

5. C - one of the parameters is a flag that controls whether the method
prints today’s date.

�9

